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Probability and expectation are characterized within the framework of symmetric
bilinear forms. Over the real field, the theory coincides with finite classical
probability. In this paper we consider a theory over finite fields. For consistency,
the probability measures must assume values in the finite field and obey the field
operations. Thus, discrete probability theory is generalized in a new way. As a
direct consequence, the sum of nonzero probabilities may become zero. Some
of the implications, ramifications, problems, and results are explored.

1. INTRODUCTION: CLASSICAL PROBABILITY AND
EXTENSIONS

Starting from some simple facts about classical finite probability, the

ways in which classical probability can be generalized are indicated. One

possible extension is singled out.

Consider a finite set V 5 {1, 2, . . . , n}; its elements are called atoms.
A (classical) probability distribution P on a finite set is determined by the

values on its atoms. Such a description will be called a maximal description.

Given the probabilities {p1, . . . , pn }, it also makes the set V least redundant .
A meaningful interpretation requires that the probabilities pi are nonnegative

and sum to 1. The probability of an arbitrary subset of V is the sum of the

probabilities of its atoms. This is equivalent to Kolmogorov’ s axiom

A ù B 5 0¤ Þ P(A ø B) 5 P(A) 1 P(B) (1)

The states of (classical) physical systems are probability distributions. In a

(classical) physical context, the observables are the random variables

1 School of ECE, Georgia Institute of Technology, Atlanta, Georgia 30332- 025 0.

3283

0020-7748/99/12 00-3283$16.00/ 0 q 1999 Plenum Publishing Corporation



3284 Verriest and Narayanan

f : V ® R (2)

The expectation Ef of a random variable f when the system is in state P is

defined as

Ef 5 ( pj f( j ) 5 [p1, . . . , pn] 3
f(1)

?? ?
f(n) 4 (3)

This expresses the fact that the distribution belongs to the dual space ( R n)*.

Alternatively the expectation may be expressed by

Ef 5 Tr 3
p1

? ? ?
pn 4 3

f(1)
? ? ?

f(n) 4 (4)

This formulates the distribution as an element of the dual of the n2-dimensional

space of Hermitian matrices. Finally, a third equivalent form is

Ef 5 [ ! p1e
2 i u 1, . . . , ! pne

2 i u n] 3
f(1)

? ? ?
f(n) 4 3 ! p1e

i u 1

? ??
! pne

i u n 4 (5)

The extensions of classical probability have traditionally been via (4) and
(5), by replacing the diagonal matrices by nondiagonal ones (Parthasarathy,

1992). See also Gudder (1988).

The novel viewpoint explored in this paper starts from an extension based

on (3). As further motivation, a notion of correlation between observables is

taken as a point of departure. The correlation between two observables f and

g is defined as

Cf,g 5 ^ f,g & 5 [ f(1), . . . , f(n)] 3
p1

? ? ?
pn 4 3

g(1)
?? ?

g(n) 4 (6)

By introducing the unit function 1

1: V ® R : 1( v ) 5 1, " v P V (7)

we recover the expectation as

Ef 5 ^ f, 1 & (8)

The correlation in the classical theory, (6), is an inner product in R n, the

space of R -valued random variables over V , with ) V ) 5 n.
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Guided by this motivation, we seek to generate a theory over arbitrary

finite fields. In the next section, we set up this framework more precisely.

2. SYMMETRIC BILINEAR FORM

Let F be a finite field, and V a vector space over F . The addition and

multiplication in F will be denoted by % and ^ , respectively.

Taking correlations as a point of departure, one would like to define an

inner product in V as a map (x, y) ® ^ x, y & from V 3 V to a number field.
Guided by classical theory, desirable properties for such an inner product are

as follows:

(i) Linearity in its second argument.

(ii) ^ x, y & 5 ^ y, x & (noncomplex).

(iii) ^ x, x & $ 0, with equality iff x 5 0.

If we let the bilinear form take values in R , then linearity implies for

x, y, z P F

^ x % y, z & 5 ^ x, z & 1 ^ y, z & (9)

which for F 5 GF(3) yields

^ 2 % 1, z & 5 ^ 2, z & 1 ^ 1, z &

But the left-hand side is ^ 0, z & 5 0, whereas the right-hand side is 2z 1 z
5 3z, which is inconsistent. Hence for linearity to hold, the image number

field must be the base field of the vector space, i.e., F .

Now since there is no consistent order relation in a finite field F , one
cannot speak about ª positivity.º Therefore, the third desirable property needs

to be dropped. Can the inequality be relaxed to nonequality? This also fails.

In the standard representation of a vector x with respect to a basis as a column

of scalars [x1, x2, x3, . . .]8, where the prime denotes the transpose that converts

columns to rows and vice versa, then ^ x, y & 5 (C i xi ^ yi is an inner product.

The vectors x in the linear span of [1, 1, 1]8 P GF(3)3 all satisfy ^ x, x & 5
0, whereas both [1, 1, 1] and [2, 2, 2] are obviously nonzero. A space with

a symmetric bilinear form shares some properties of a Krein space (BognaÂr,

1974; Gohberg et al., 1983), which is a vector space over R or C , on which

an indefinite inner product is defined. However, notice that in the finite field

context, the question of definiteness itself is meaningless.

Thus we define a symmetric bilinear form on V as a map (x, y) ® ^ x,
y & of V 3 V into F such that for any y P V the map

yR: x ® ^ x,y &

is a linear function from V to F , and likewise, for any x P V, the map
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xL: y ® ^ x, y &

is a linear function from V to F . The geometric properties of such spaces are

described by O’ Meara (1963) and Jacobson (1985).
Now why may finite fields be of interest? Any system that can be

descibed by an automaton has a local representation over F . Applications of

deterministic linear automata abound in coding, cryptography and symbolic

dynamics (Booth, 1967; Gill, 1962; Pretzel, 1996).

Figure 1 shows a ª black boxº representation of a deterministic automaton
having a finite number of possible states. At time k, let xk be the state of the

automaton, described by a vector in F n. The input (or control or conditioning)

uk changes the state of the automaton according to the F -linear dynamical

equation

xk 1 1 5 Axk % buk (1 0)

where A P F n 3 n and b P F n 3 1. Let us also assume that the output (or
measurement) of the automaton at time k depends on the state and the

input through

yk 5 cxk % duk (11)

where c P F n 3 1 and d P F . Extensions to multiinput, multioutput automata

are straightforward (Booth, 1967). The initial state x0 and the sequence of
inputs {uk} produces thus the evolution of the system and determines

(uniquely) its output sequence {yk }.

For a stochastic automaton, a probabilistic description of the above is

given. The initial state and inputs are random variables. Assuming statistical

independence between the initial state and the successive inputs, a big product
space V 2 1 3 V 0 3 V 1 3 . . . is introduced, where x0 P V 2 1, u 0 P V 0, u1 P
V 1, . . . Since all intervening random variables in such a state space model

are finite-field-valued, a description defining correlations by

Cf,g 5 ^ f, g & 5 [ f(1), . . . , f(n)] 3
p1

? ? ?
pn 4 3

g(1)
? ??

g(n) 4 (12)

must be consistent in F . Hence the probabilities themselves must be F -valued.
The normalization condition follows from E1 5 1, i.e.,

Fig. 1. Automaton.
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E1 5 18P1 5 Tr P 5 1 (13)

Thus

p1 % p2 % . . . % pn 5 1 (14)

Example. A scalar system in GF(3):

xk 1 1 5 xk % uk

yk 5 xk

With V uk 5 {0, 1, 2}, there are 33 5 27 different random variables (observ-
ables). The three deterministic (or pure) states x0 P {0, 1, 2} are imbedded as

x0 ® {x ) x( v ) 5 x0, " v }

Likewise, there are 32 5 9 possible states (measures) on V uk. These are:

1. The three permutations of [1, 0, 0]8, which are the ª pure states.º
2. The three permutations of [2, 2, 0]8.
3. The three permutations of [1, 1, 2]8.

Introducing the equivalence relation , among F -valued random

variables,

x , y Û P( {v ) x( v ) Þ y( v ) }) 5 0 (15)

it follows that:

(i) If P is of the first form, say P 5 diag{1, 0, 0}, there are three

equivalence classes. We group them as class I:

[i] : 5 5 3
i

3
3 4 , i 5 0, 1, 2 6 (16)

(ii) With the probability measures of type P 5 diag{2, 2, 0}, there
correspond six equivalence classes, characterized by a two-dimensional set,

grouped as class II:

F i

j G : 5 5 3
i

j

3 4 , i, j P {0, 1, 2}6 (17)

(iii) The measures of type P 5 diag{1, 1, 2} determine a three-dimen-

sional set, class III. For instance, the different classes of zero-mean variables

in GF(3) are characterized as
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Class I: [ 0]

Class II: F 0

0 G , F 1

2 G , F 2

1 G
Class III: 3

1

2

04 , 3
2

1

04 , 3
1

0

1 4 , 3
0

1

1 4 , & permutations

For instance, with probability P 5 diag{2, 2, 0} in GF(3), there are four

subspaces of random variables. Denoting the F -linear span by +, these are

+ F 1

0 G , + F 0

1 G , + F 1

1 G , + F 1

2 G
Defining x ’ y by the condition Cx,y 5 0, we get

+ F 1

0 G ’ + F 0

1 G , + F 1

1 G ’ + F 1

2 G
3. THE AXIOMATIC SETUP

As in classical probability theory, we take for the space of outcomes
(the sample space) a finite set V 5 {1, 2, . . . , n }. The events in the theory

are the elements of a (Boolean) algebra @ of subsets of V closed under union

and complementation and containing V . The underlying logic in this theory

is therefore Boolean. Since V is finite, there is no need to introduce a s -

algebra to define a measurable space ( V , @). The subset [@] 5 {B i P V }
of the algebra @ is called a generating partition for @ if ø Bi 5 V and for

i Þ j, B i ù Bj 5 0¤. Notice that the atoms of V form a generating partition

iff @ 5 2 V , the power set of V . Under this condition, ( V , @) is least redundant.

The deviation from the classical theory comes from the measures.

Definition 3.1. Given a finite field F , a Galois Measure Q on the measur-
able space ( V , @) is an F -valued additive mapping Q: ( V , @) ® F satisfying:

(i) Q( V ) 5 1.

(ii) If A, B P @ with A ù B 5 0¤, then Q(A ø B) 5 Q(A) % Q(B).

Note that the first axiom is just a normalization condition. These two
axioms are the same as required in the Kolmogorov definition of probability.

The axiom of positivity in the Kolmogorov theory is nonexistent here since

the Galois field is not an ordered field. If F 5 GF( p) for p prime, we shall

denote the measure by Qp. By analogy with the word ª probability,º the term
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galoibility (after Galois) will also be used to denote the Galois measure of

an event. Note that the Galois measure of the measurable sets in @ is

completely determined by the galoibility on the generating partition.
It follows from definition (3.1) that

Q( 0¤) 5 0

Denoting by A the complement of A in V , then for Q 5 Qp , we have

Qp(A) 5 1 % ( p 2 1)Qp(A)

since p 2 1 is the additive inverse of 1 in GF( p). In general, one has

Qp(A ø B) 5 Qp(A) % Qp(B) 1 ( p 2 1)Qp(A ù B)

An important consequence of this is that only sets with kp 1 1 elements,

k $ 0 integer, can have a `uniform’ distribution Qp. In particular if V 5
GF( p) is used for instance as trivial sample space of a GF( p)-valued random
variable, a `uniform’ distribution is nonexistent since it cannot be normalized:

ª Galois probability abhors uniformity.º

Theorem 3.2. There are p p 2 1 different Galois measures on V 5 GF( p)

with its maximal algebra.

Proof. Follows from a simple counting argument.

Definition 3.3. A measurable space endowed with a Galois measure will

be called a Galois measure space, and denoted by ( V , @, Q).

Definition 3.4. Let ( V , @, Q) be a Galois measure space; the event B P
@ is called certain if Q(B) 5 1 and no subset of its complement B has

nonzero galoibility. Event B P @ is quasicertain if Q(B) 5 1 and $ A , B
such that Q(A) Þ 0. If Q(B) Þ 1, the event B is called (galois) probable.

Example. Let V 5 {0, 1, 2, 3, 4}, with Q represented by diag{1, 1, 1,

3, 0} in GF(5), the events {0}, {1}, and {2} are quasicertain, the event {0,
1, 2, 3} is certain, and {3} is probable. Notice that a certain event may itself

be composed of quasicertain subsets.

Definition 3.5. A Galois random variable (grv) x on a Galois measure

space ( V , @, Q) is an F -valued, @-measurable map x: V ® F , i.e.,

x 2 1( f ) , @, " f P F

Then x is said to assume the value f with galoibility Q(x 2 1( f )). Two random

variables, x and y on a Galois measure space are equivalent if Q {v ) x( v ) Þ
y( v ) } 5 0.

If ) V ) 5 n, the grv’ s are represented as vectors in the space F n, endowed

with a symmetric bilinear form
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^ ? , ? & : F n 3 F n ® GF( p): (x, y) ® o C
n

i 5 1

xi ^ yi ^ Q(i) 5 ^ x, y & (18)

representing the correlation Cx,y.

The expectation of x is defined by the ª integralº with respect to the

Galois measure, and is obtained by Cx,1. Thus the Galois random variable x
has Qp-expectation

# V

x( v )Qp( v ) 5 o C
n

i 5 0

xi ^ Qp(i)

4. CONDITIONING

Let B P @, with Q(B) Þ 0. The classical definition of conditional

probability can be carried over directly.

Definition 4.1. A conditional Galois measure Q( ? ) B) on ( V , @) is a
Galois measure on ( V , @) satisfying

Q(A ) B) 5
Q(A ù B)

Q(B)
, " A , @ (19)

In terms of the indicator function and correlations the definition

reduces to

Q(A ) B) 5
o C x A(i) x B(i)Q(i)

o C x B(i)Q(i)
5

C x A , x B

C x B,1
(2 0)

For instance, with ( V , @, Q) 5 (GF(3), 2GF(3), diag{2, 1, 1}) one finds

Q( ? ) {1, 2}) 5 diag{0, 2, 2}.

Conditional expectation is expectation with respect to the conditional

measure. Consider the Galois measure space in the above example. For the
grv x 5 [x 0, x1, x2]8, one finds E(x) 5 2x 0 % x1 % x2 and E(x ) {1, 2}) 5
2x1 % 2x2, E(x ) {2}) 5 x2, E(x ) {0}) 5 x0. The quantity E(x ) {0, 1}) cannot

be defined via conditional probability since Q( {0, 1}) 5 0. Can the notion

of conditional expectation be defined as Kolmogorov did, thus making condi-

tional expectation more fundamental than conditional probability? To this

end, consider all measurable functions ( V , @) ® F for an arbitrary algebra @.

Definition 4.2. The conditional expectation of a grv x with respect to a

subalgebra & of @ is the &-measurable grv, denoted E(x ) &) or E&x, such

that for every G P @, and every &-measurable grv f one has
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# G

x f dQ 5 # G

E(x ) &) f dQ (21)

Note that this defines a unique conditional expectation, if it exists, under the

equivalence , . This definition can be relaxed, since in the finite case all

measurable functions are generated by the indicator functions. Thus, using
the correlations,

" G P &: Cx, x G 5 CE&x, x G (22)

In the above example, let B 5 {0, 1} and & 5 {0¤, B, B, GF(3) }. The
indicator functions of interest are the functions taking values (1, 0) and (0, 1),

respectively, for (B, B). If the conditional expectation assumes values X on

B and X on B, then X and X need to satisfy the relations

2x0 % x1 5 X ^ (2 % 1)

x2 5 X

Notice that the first condition implies that, unless 2x0 1 x1 5 0, there
cannot be a consistent definition of the conditional expectation following

Kolmogorov. More generally, we have the following:

Theorem 4.3. Let ( V , @, Qp) be a Galois measure space, and let x be

a grv defined on this space. Given a subalgebra & of @, the conditional

expectation E&x exists if for every G in the generating partition [&] such that

Q(G) 5 0, the correlation Cx, x G 5 0 . In this case the conditional expectation

on probable G ’ s is given by

E(x ) G) 5 5
Cx, x G

Q(G)
if Q(G) Þ 0

arbitary if Q(G) 5 0

Proof. Generalizing the example, we have for the sets in the generating

partition [&],

Cx, x G 5 CE&,G 5 E(x ) G)Q(G)

from which the statement follows. n

If B is certain and & is the algebra generated by B and any subalgebra

of its complement, then E&x 5 Ex.

5. BERNOULLI TRIALS

The description of repeated experiments, all physically independent,

requires the definition of product spaces. Given a Galois measure space ( V ,



3292 Verriest and Narayanan

@, Q), consider the Cartesian product V 3 V 3 ? ? ? 3 V (N copies), together

with the algebra generated by @ 3 @ 3 ? ? ? 3 @. Denote them respectively by

V N and @N. Define a mapping on the product measurable space ( V N, @N)
into F as follows:

QÃ(B1 3 B2 3 ? ? ? 3 BN) 5 Q(B1) ^ Q(B2) ^ ? ? ? ^ Q(BN) (23)

Then QÃsatisfies

(i) The normalization condition QÃ( V N) 5 Q( V ) ^ N 5 1.

(ii) On the generating algebra of ( V 2, @2), if B1 ù B2 5 B81 ù B82 5
0/ , then

(B1 3 B2) ø (B81 3 B82) 5 (B1 ø B81) 3 (B2 ø B82) \ (B81 3 B2) \ (B1 3 B82)

and therefore it follows from the galoibility axioms that

QÃ((B1 3 B2) ø (B81 3 B82)) 5 QÃ(B1 3 B2) % QÃ(B81 3 B82)

The F -additivity in the general case for ( V N, @N) easily follows by

induction. Hence QÃis a valid Galois measure making ( V N, @N, QÃ) into a

Cartesian product Galois measure space. QÃis a product measure induced by

Q. In the same fashion, the product of different Galois measure spaces can

be formed to define a galoibility space associated with general combined

physically independent experiments. By a Bernoulli experiment, we refer to
independent trials of a yes/no experiment, that is, one with @ 5 {0/ , B, B,

V }. As defined, all random variables described over such a product space

must be F -valued. Now one ª obviousº random variable one may want to

consider is the number of successes in N successive trials. However, such a

count necessarily assumes all possible integer values from 0 to N. There is

no room for such a thing in this framework. In fact, at a more fundamental
level, we also have no room to even consider N repetitions for N $ p in

F 5 GF( p), since in this universe, one simply cannot count higher than p 2
1. This is temporarily sidestepped by allowing a natural number-valued count,

referred to as a count. (It will be shown later that this is indeed unnecessary.)

The definition of count, which falls outside the domain of F , is only justifiable
using the product space. For instance in GF(3), the event {count 5 4} is

the event

(B 3 B 3 B 3 B) ø (B 3 B 3 B 3 B) ø (B 3 B 3 B 3 B)

ø (B 3 B 3 B 3 B)

and is thus well defined. Within the finite-field scope, only the intracount
can be defined. By this we shall understand the F -valued count kÃ( v ) [i.e.,

ª countº modulo p in GF( p)]. Only the intracount can be measured and is a



An Excursion in Finite-Field-Valued Measures 3293

( V N, @N, QÃN)-grv. If kN( v ) is the natural-valued count given N, then kÃN
( v ) 5 kN( v ) mod p is the corresponding intracount. Clearly,

kÃN 5 f Û outcome ( v 1, v 2, . . . , v N)

contains f, f 1 p, f 1 2p, . . . , f 1 lp components in B (24)

where f 1 lp # N , f 1 (l 1 1)p, or l is the largest integer smaller than

N/p.

Theorem 5.1. Given a GF( p)-Bernoulli trial with Q(success) 5 a, then

the intracount distribution is p-periodic in N, the number of trials. Moreover

if N0 , p, then the galoibility of the intracount in the Bernoulli experiment

is given by

QÃN0(k
Ã) 5 1 N0

kÃ2 akÃ(1 2 a)N02 kÃmod p (25)

The event ª K successes in N trialsº has galoibility

QÃN([K ]N) 5 &
a

i 5 0
QÃNi(ki)

expressed in terms of the p-ary expansion of K and N given by

N 5 N0 1 N1 p 1 N2 p2 1 ? ? ? 1 N a p a (26)

k 5 k0 1 k1 p 1 k2 p2 1 ? ? ? 1 k a p a (27)

Proof. See Appendix.

A direct consequence of this theorem is that indeed in this space there

is no reason to count higher than p 2 1, as mentioned before. The count

does not provide any information that is not already present in the intracount.

There is a simple visualization of this result: Write down Pascal’ s triangle

modulo p. A self-similar structure, the Sierpinski triangle, results. The self-

similarity arises from there petition of the factors 1 Ni

ki 2 as N is increased. The

Sierpinski triangle is shown in Fig. 2, where for clarity the 0’ s are omitted.

As a final observation, note that the expectation of kÃN evaluates, as
expected, to aN mod p. There is, however, no relative frequency notion which

gives a simple interpretation of this. For instance, in GF(5), one finds for

a 5 2, EkÃ1 5 2 and EkÃ2 5 4. There can be no ª limit theoremsº in a theory

over finite fields.
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Fig. 2. Pascal triangle in GF(3).

6. RANDOM WALK

In order to illustrate the idea, consider a random walk on GF(3), starting
at 0. Let the individual steps uk be independent and identically distributed

(i.i.d) with zero mean. This implies that for all k, Q(uk 5 1) 5 Q(uk 5 2)

5 2, since 2 % 2 5 1 in GF(3).

We get, with x0 5 0, a pure state, the successive galoibilities of the

position xk:

x0 5 0 Þ 3
xk(2)

xk( 0)

xk(1) 4 5 3
0

1

04
x1 5 u1 Þ 3 2

0

2 4
x2 5 u1 % u2 Þ 3

1

2

1 4
x3 5 u1 % u2 % u3 Þ 3

0

1

04
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We departed from the ª orderingº ( 0, 1, 2), in order to keep the mean in the

ª middleº of Fig. 3. [Recall that 2 5 2 1 in GF(3).] The numbers above the

C are the galoibilities.
As shown in Fig. 3, the process is self-focusing or repetitive. An alterna-

tive interpretation is that time itself is recycled. This curious behavior is not

an artifact of GF(3), but is true for all GF( p).

Theorem 6.1. For p $ 2, the random walk in GF( p) is recycled (i.e.,

refocuses into its initial state after p transitions.

Proof. Since p must be odd, set p 5 2q 1 1. Then, using 2 1 to denote

the field element p 2 1, the random walk process is characterized by

Q(u 5 1) 5 Q(u 5 2 1) 5
1

2
mod p 5 q 1 1 (28)

The Markov chain transition matrix for the state of the random walk is then

M 5 (q 1 1) F 0 1 1

1 ? ? ? ? ? ? j
? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ? ?
j ? ? ? ? ? ? 1

1 1 0 G (29)

The k-step transition probability is M k, and thus the probability distribution

at time k is p k 5 M k p 0. Now, by the Cayley±Hamilton theorem, M p 5 I,
thus proving the assertion. n

It follows from the above theorem also that stationary Galois distributions

do not exist. The one-dimensional random walk has p p 2 1 possible states.

Each state belongs to a p-cycle, thus creating p p 2 2 cycles in the state transition

Fig. 3. Random walk in GF(3).
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diagram for a random walk in GF( p). Modulo cyclic permutations, this leaves

p p 2 3 pattern cycles.

7. CONCLUSIONS

Some initial ideas were presented toward a generalization of probability

theory by letting probabilities assume values in a finite field. It was discovered

that an elementary symmetric random walk in GF( p) refocuses after p steps.

If p 5 2q 1 1 is large, then for k # q steps, the random walk is indistinguish-
able from the random walk described on an integer lattice. Because of the

repetitive behavior, convergence theorems for galoibilities similar to classical

probability (i.e., law of large numbers) are nonexistent.

APPENDIX

Lemma A.1 Let [
p

denote congruence modulo p. Let also ë ? û denote the
floor-function: ë x û is the largest integer smaller than or equal to x. For any

two positive integers a and b:

(a 1 1)(a 1 2) ? ? ? (a 1 p)

(b 1 1)(b 1 2) ? ? ? (b 1 p)
[
p ë a/p û 1 1

ë b/p û 1 1

Proof. Any set of p consecutive integers contains a multiple of p. Using

the division theorem, a 5 a 1p 1 a 0, b 5 b 1 p 1 b 0 with 0 # a 0, b 0 , p,

and canceling the p between numerator and denominator gives

(a 1 1)(a 1 2) ? ? ? (a 1 p)

(b 1 1)(b 1 2) ? ? ? (b 1 p)

5
( a 1p 1 a 0 1 1)( a 1p 1 a 0 1 2) ? ? ? (( a 1 1 1)p) ? ? ? (( a 1 1 1)p 1 a 0)

( b 1p 1 b 0 1 1)( b 1p 1 b 0 1 2) ? ? ? (( b 1 1 1)p) ? ? ? (( b 1 1 1)p 1 b 0)

[
p a 1 1 1

b 1 1 1

( p 2 1)!

( p 2 1)!

By Wilson’ s theorem (Barnett, 1972), ( p 2 1)! [
p

p 2 1, the above fraction

is well defined, thus proving the lemma. n

Simplify the notation by defining f x 5 ë x/p û . We have the following

result.

Lemma A.2. For positive integers N, n, and k, there holds
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1 N 1 np

k 2 [
p ( f N 1 n)! f N 2 k!

( f N 2 k 1 n)! f N!

Proof. Consider first

1 k 1 m 1 p

k 2 5
(k 1 m 1 p) ? ? ? (k 1 m 1 1)

(m 1 p) ? ? ? (m 1 1) 1 k 1 m

k 2
5

f k 1 m 1 1

f m 1 1 1 k 1 m

k 2
by Lemma A.1. Hence one deduces the recursion

1 k 1 m 1 np

k 2 5
f k 1 m 1 n

f m 1 n 1 k 1 m 1 (n 2 1)p

k 2
which upon iterating gives

1 k 1 m 1 np

k 2 5
f k 1 m 1 n

f m 1 n

f k 1 m 1 n 2 1

f m 1 n 2 1
? ? ?

f k 1 m 1 1

f m 1 1 1 k 1 m

k 2
from which the statement follows. n

Lemma A.3. If N, n, k, and l are nonnegative integers, with N and k less
than p, then

1 N 1 np

k 1 lp 2 [
p

1 n

l 2 1 N

k 2
Proof. Note that

1 k 1 m 1 lp

k 1 lp 2 5 1 k 1 m 1 lp

m 2 [
p ( f k 1 m 1 l)! f k!

( f k 1 l)! f k 1 m! 1 k 1 m

m 2 (3 0)

by Lemma A.2. It follows then from Lemma A.2 and (3 0) that for n $ l

1 N 1 np

k 1 lp 2 5 1 N 1 (n 2 l)p 1 lp

k 1 lp 2
[
p ( f N 1 (n 2 l)p 1 l)! f k!

( f k 1 l)! ( f N 1 (n 2 l)p)! 1 N 1 (n 2 l)p

k 2
[
p ( f N 1 n)! f k!

( f k 1 l)!( f N 1 n 2 l)! 1 N 1 (n 2 l)p

k 2
If N $ k, this reduces further to
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[
p ( f N 1 n)! f k!

( f k 1 l)!( f N 1 n 2 l)!

( f N 1 n 2 l)! f N 2 k!

f N!( f N 2 k 1 n 2 l)! 1 N

k 2
[
p 1 f N 1 n

l 2
1 f k 1 l

l 2
1 f k 1 n 2 l

n 2 l 2
1 f N 2 k 1 n 2 l

n 2 l 2 1
N

k 2
If now 0 # k # N , p, then f N 5 f k 5 f N 2 k 5 0, and thus

1 N 1 np

k 1 lp 2 [
p

1 n

l 2 1 N

k 2
In the other cases (N , k with n $ l and n , l) it is readily verified that

1 N 1 np

k 1 lp 2 [
p

0

Hence in all cases, the stated formula has been shown. n

Lemma A.4. Let N and k be positive integers with p-ary expansions (26)
and (27), with at least one of k a and N a nonzero; then

1 N

k 2 [
p

p
a

i 5 0 1 Ni

ki 2 (31)

Proof. This is a direct consequence of Lemma A.3. n

Note that if one of the Ni is smaller than the corresponding ki , the

binomial 1 N

k 2 is congruent (modulo p) to zero.

Lemma A.5. Let N and k be positive integers with p-ary expansions

given in Lemma A.4). Then for any integer 0 , a , p, the following
congruence holds:

ak(1 2 a)N 2 k [
p &

a

i 5 0

aki(1 2 a)Ni 2 ki (32)

Proof. By Fermat’ s (little) theorem (Barnett, 1972), if k 5 lp 1 k0 and

N 5 n p 1 N 0, with k0, N0 , p, then

ak(1 2 a)N 2 k 5 alp 1 k0 (1 2 a)( n 2 l)p 1 N0 2 k0 mod p

5 (al)pak0((1 2 a) n 2 l) p(1 2 a)N0 2 k0 mod p
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5 al(1 2 a) n 2 lak0(1 2 a)N02 k0 mod p

By induction, the assertion follows. n

Proof of Theorem 5.1. By the division algorithm, N 5 N 0 1 np with

N0 , p. Represent the event ª count 5 Kº or K successes in the N trials for

notational simplicity as [K ]N. Recall that the event [K ]N is well defined, but

K is not a grv. Let also K 5 k 1 ip, with k # p.

It follows from Lemmas A.3 and A.5 that

QÃ
N([k 1 ip]N) [

p

1 N0 1 np

k 1 ip 2 ak 1 ip(1 2 a)N02 k 1 (n 2 i)p

[
p F 1 N 0

k 2 ak(1 2 a)N02 k G F 1 n

i 2 ai(1 2 a)n 2 i G
The iterative form in Lemmas A.3 and A.4 yields the formula for the galoibil-

ity associated with event [K ]N , by noting that for all Ni , ki , p, count and

intracount are identical and QÃNi([ki]) 5 QÃ
Ni(ki).

Now consider the event ª intracount in N trials is k,º k , p, denoted by

kÃN. Recall that this defines a grv and that

kÃN 5 [k]N ø [k 1 p]N ø ? ? ? ø [k 1 lp]N

with l depending on N, such that N 2 p , k 1 lNp # N. Then

QÃN(kÃN ) 5 o C
l

i 5 0

QÃN([k 1 ip]N)

5 QÃN0(k) o C
l

i 5 0 1 n

i 2 ai(1 2 a)n 2 i

It is readily seen that if k # N0, then l 5 n, and by the binomial theorem,
the summation is congruent to 1, thus leading to

QÃN(kÃN) 5 QÃN0(k) (33)

If N 0 , k, then l 5 n 2 1, and the summation evaluates to 1 2 an. However,

in this case the factor QÃ
N0(k) is zero because 1 N 0

k 2 5 0. Thus the equality

(33) is universally valid. It shows that the distribution of kÃN only depends

on N through the residual N0, thus proving the periodicity. n

REFERENCES

Barnett, I. A., Elements of Number Theory, Prindle, Weber and Schmidt, 1972.



33 00 Verriest and Narayanan

BognaÂr, J., Indefinite Inner Product Spaces, Springer-Verlag, 1974.

Booth, T., Sequential Machines and Automata Theory, Wiley, 1967.

Gill, A., Introduction to the Theory of Finite State Machines , McGraw-Hill, 1962.

Gohberg, I., Lancaster, P., and Rodman, L., Matrices and Indefinite Scalar Products, Birk-

haÈ user, 1983.

Gudder, S. P., Quantum Probability, Academic Press, 1988.

Jacobson, N., Basic Algebra, Vol. I, Freeman, 1985.

O’ Meara, O. T., Introduction to Quadratic Forms, Academic Press, 1963.

Parthasarathy, K. R., An Introduction to Quantum Stochastic Calculus, BirkhaÈ user, 1992.

Pretzel, O., Error Correcting Codes and Finite Fields, Oxford University Press, 1996.


